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ARSTRACT
The phase of s frcgueney standard that vees poriodic interropation and control
of o local oscillator (10O) s depoaded by o Jong: tenm rondon walk cornponent.
mduced by downcanversion of LO noise into the loop paashond, "he Dick forvimnls

for the noise level of this depaadation is denved from an exphicit solution of an

1.O contvol-Toop mmodel.
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and g 1s the Fomier cosine coclhicient
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Foasting derpvations

H|2)[8] of the Dick formula (1) ave pantly intuitive, based on previous
experience in the behavior of control loops. Phe intent of this stady is fo pot the Dick effeet
on fivmer ¢ rounid by piving a mathanatical derivation of (1) from a simple mmodel for a
periodic 1O contiol Toop with o general weighting, fonction g(/). On the way, an explicit.
solution for the ontput THO hequeney is derived. A caeful interpretation of this solution
yiclds o fanmala for the 1LVLO spectial density S, (), and conditions for the validity of the

Dick formmula,

1. CoNTROV- 1,001 MODIL

Fipane | shows the chosenmodel for an 1O control 10op, coptaining hoth analog stid dig it
clements. Al signads are sealed as fractions! hrequency deviation from the ideal freguency
determined by the atomie ttansition. ‘The fractional frequeney noise conty ibuted by the free
running local oscillaton is yy.o(4). The output LEO fractional frequency deviation s y{4). "The
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The detection noise tenn o, can represent photon count. fluctuations quency standads
with optical detection, for example. " he cunlative sum of the error signals is o, which,

A

Lo (T Exeept

altiplicd by a constant. A, conrects e fiequency of the O fon 7'l
for initin conditions, the following, two cquations define the closcd-1oop model completely
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10 < A< 1, then g (8) desaribes a lowpass filtoer. this case, the penera solution s
a1 Mo, 5 C( )" (.0)
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From now on, we shall ipnore the transient part of this solution hy setting ¢/ 0

et us express o, divectly as a fonetion of the inputs yro(f) and v, Define the diserete

time lowpass il e Hy with weights

which sum to and  ansler function
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Substituting (9) into ( 0) gives
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where we have introduced a cansal continuous thme filter 70 s itpulse response L (1),
defined piceewise for £ 0 by
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consists of of repetitions of a revased cycle of g with exponcntially decreasing amplitudes.
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Substituting (12) nto (7) pives a steady- state solutionforthe 1,1,0 {requencey:

y() : wolt) - Hapo @) Hav,, 'l <0l < (-1 1), (14)
V. e 1O SPROTIRUM

Although (14) gives an explicit fonmmla for the output ficquency, its interpretation requires
careful handling. Under reasonable assmptions (sce below) on yo(1) and o, as yandom
processes, we cmmol. expect. the piccewise defined process y(t) to he stationary, or even 1o
have stationary nth increments for some 1. Thus, we do not know how Lo assipn a spectral
density to it. To get around this problan, it is convenient to stady the the semples a: (01) of
the LO time residual w(t) = [ 4(0)dl. o to, their behavior is deternmined by the hehiavio
of the average 11,0 fregnencies
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where A is the moving-averape filter whose action ona function z(1) is
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We are now poing Lo derive the spectrom of the disacte time process Ay (0') defined

by (1G). To this end, consider the auxiliary process defined by
Y(): Ayo(t) Hapo(t- 1), (17)
which is obtained from ¥1.0,(1) by a lincar time invariant. operation 2 with {ransfer function
B = A ¢ 7 TR AU ¢ T (DG, (18)

Assume that g o(1) is a mean-continnous random process with stationary finst increments

[4] and a two sided (even) spectial density SVO(), which necessanily satisfies

[ siourar < oo [TSO0 < (19)

Joo Iy,
In pavticular, if .S';,‘()(f) is asymptotic to a power law | f]" as 5 0, then a > - 3. Phis class
of noises allows all low-frequency powar-law spectia customarily attributed to oscillators,

Because A0) = 1a(0) = G(0) - 1, we have
B Oy (-0 (20)

henee 13 attenmates any low- fi ecqueniey diver gen@d .o () allowed by (19), leaving, a sta-

Lonary p rocess Y (1) with two sided speety al density
Sy (f) = 1B S (21)

T'he first two terms of the right side of (16) ave just Y (1) samplec with period 7. These
TN . . . . .
sanples; )« (07}, constitute a discrete time stationary process wl se two sided spectyal

density is
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‘111 ter 111s with k:/ o account forthe 1)ick ¢ flect. 1 el the detectionnoise process v, he
indeprendent of 2/], (/) and stationary, with two sided specty al density S, (f). Then the
process Ay (115) piven by (1 6)is stationary. 1 view of the PYOVIONS discussion, its two sided

spectral density can )(P wiittenas
‘S‘A?I( ): g(/;1/(/> )/\u(/‘)a '/, /(/‘)
where

S5, () - Sy ()4 (D1 8. (), (22)

the maim par {, so to speak, and

/\1/ V > q)' f | If()a (73)

L0

the aliased part, where the sumn includes hoth positive and negative &

V. e IICK IFORMULA

We arce looking for a long- 1er m white 1'M specty al comn ponent inty oduced tHy the aliased
part. There is such a component if the aliased spectr am (23) is contimons at [ - 0; and
Sh, (0) > 0. Suflicient. conditions for the series in (23) to converge wnifornidy for [ f| < f./2
Lo a continuous function S}m (/) ave (i) ¢(t) is square integrable ona 7, period, and (i)
S?]/’( '(f) is continuous for |f] > [./2 and tends o zero as [ oo, Tocompute S) (() we

note from the transfer- function formulas (11 ) and (1 6) that,
]Ir/ (l‘f() : ]> A (l‘f() : (SI.(Ia
where g is the Kronecker delta. Hence (18), (21), and (23) give

Shy (0): 2 )

G (k] l%”’ (kS (24)




where we have now used the symmetry of the smmands about zero frequency. 'This formula
holds for one sided spectral densitics also.

Observe that the numbers |G (K f)]7 are invariant to translations of the function g(2) in
time. 1 follows that the result (24) is invariant to shifts in the time origin, i.c., if the 1.1,0O
phase a:(1) is sampled on any time grid of forin 17, -1 1y, then the samples will incnde a
white I'M component. with spectral density (24) att zero frequency. Morcover, if the time
origin can be chosen so that the penodic function g(f) is even, then it is also even aboud,
1,./?2, and
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where g is given by (2). Thus (24) reduces to the Dick fornula (1),

VI, REMARKS

I the actual LLO frequency were Y (1) instead of (1), there would be no Dick eflect. Une
fortunately, ¥ (1) is only a tool for the analysis; its existence is mathematical, not physical.

The Dick effect may be hidden by the main part. (22) of the 11O spectram. I the
detection noise , is white, then the term [y (NS, (f) competes divectly with the Dick
effect. as another white I'M noise at low frequencies. 'The basie action of  he (’01111 01 loop
operates on the LO frequency by a filter with transfer function 3(f) = A(f) o 7 n.(f),
which, as we obsarved, is O (f?) as f» 0. Thus, the filta adds 2 to the exponent of any
low-fi equenicy p OWer jaw that. .S';l'()(t/) obeys. i S?’,‘()(f) IS mao ¢ divergent. than f ? (1 andom
walk I'M), then SG . (f) is unbounded near = (), henee masks the Dick effect completely.

Randomwalk I'M inthe 1,() is transformed to another white I'M cornponentin the 1,1,().




Anything, less divergent, like f7(flicker}'M), is 1 ansformed to an 1,1,() spectr al density
that tends Lo zero at low fi cquencies. In this case, the 1)ick effect and the detection noise
predominate in thie long term.

Although this dai ivation is confinedto a par ticular 100p model, the precision with which
the 1)ick formula ema ges leads the anthorto conjectire that, for agivert sensitivity function
g(t), the formula 1101(1s for any feedbackinechanismthatserves the fundarmental pu ])os(! of

stearing the 1,() to the atomic-line freguenicy.
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FIGURE CAPTION
Fig. 1. A feedback-loop model for a local oscillator with periodic interrogation and control. The
impulse response 07 the filter G is one cycle of the normalized, reversed interrogation sensitivity

function ~(f).




local

oscillator
locked L O
+ -y
yl O - Pt - l
- detection
TC { GJ filter

RN

[sample period T

o

detection
noise




